Monday, 19 September 2011

All possible ways of getting to a target sum

Suppose we are given infinite supply of {5,20,25} cents coins. What are the possible ways of get 1$?
We can solve above problem by backtracking algorithm as given below

   1:  private static void GetAllArrangements(int[] set, int index, int target, Dictionary<int, int> partialResult, List<List<int>> result)
   2:  {
   3:      for (int i = index; i < set.Length; i++)
   4:      {
   5:          int item = set[i];
   6:          int newTarget = target - item;
   7:          if (newTarget == 0)
   8:          {
   9:              if (!partialResult.ContainsKey(item))
  10:              {
  11:                  partialResult.Add(item, 1);
  12:              }
  13:              else
  14:              {
  15:                  partialResult[item]++;
  16:              }
  17:                      
  18:              List<int> newArrangement = new List<int>();
  19:              foreach (var item2 in set)
  20:              {
  21:                  int count = 0;
  22:                  partialResult.TryGetValue(item2, out count);
  23:                  newArrangement.Add(count);
  24:              }
  25:                      
  26:              result.Add(newArrangement);
  27:              partialResult[item]--;
  28:          }
  29:          else if (newTarget >= set[0])
  30:          {
  31:              if (!partialResult.ContainsKey(item))
  32:              {
  33:                  partialResult.Add(item, 1);
  34:              }
  35:              else
  36:              {
  37:                  partialResult[item]++;
  38:              }
  39:                      
  40:              GetAllArrangements(set, i, newTarget, partialResult, result);
  41:              partialResult[item]--;
  42:          }
  43:      }
  44:  }

All possible subsets of set with duplicates removed

Given a set of character {a, b, c, d} find all subsets. The final list should not have any duplicate entry.



   1:  /// <summary>
   2:  /// Given set {a, b, c, d} below are all subsets 
   3:  ///     d
   4:  ///     dc     c     
   5:  ///     dca    cb     b   a
   6:  ///     dcba   cba    ba
   7:  ///     dca    ca
   8:  ///     db
   9:  ///     dba
  10:  ///     da
  11:  ///  This algortithm picks an item from input set and prepends it with items present in output set as well as adds the item
  12:  ///  This guarantees unordered combinations. i.e. it treats "ab" and "ba" same ways.
  13:  /// </summary>
  14:  /// <param name="data"></param>
  15:  /// <returns></returns>
  16:  static List<string> GetAllSubsets(char[] data)
  17:  {
  18:      List<string> result = new List<string>();
  19:      for (int i = 0; i < data.Length; i++)
  20:      {
  21:          for (int j = result.Count - 1; j >= 0; j--)
  22:          {
  23:              StringBuilder sb = new StringBuilder(result[j]);
  24:              sb.Insert(0, data[i]);
  25:              result.Add(sb.ToString());
  26:          }
  27:          result.Add(new string(new char[] { data[i] }));
  28:      }
  29:   
  30:      return result;
  31:  }